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Symbolic and numerical study of Fourier series
and PDEs using Maxima
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Fourier Analysis provide a set of techniques for solving partial differential equations(PDEs)
in both bounded and unbounded domains, and various types of initial conditions. In the
bounded domain case, the basic idea is to apply the separation of variables method which
leads to a well-defined algorithm for developing the solution in a Fourier series. Therefore,
this problem is tractable with a Computer Algebra System(CAS). In this work we introduce
a Maxima package (called pdefourier ) to solve it.
The package is able to compute the Fourier series of a function both numerically and symbol-
ically, admitting piecewise-defined functions as arguments. It contains solvers for the one-
dimensional heat and wave equations on a domain [0, L], with general boundary conditions
of the form

α1u(0, t) + β1ux(0, t) = f1(t)

α2u(L, t) + β2ux(L, t) = f2(t)

Also, the package can solve the two-dimensional Laplace equation for a variety of domains
(rectangles, disks, annuli, wedges) and boundary conditions (Dirichlet, Neumann and mixed).

Keywords: Fourier Analysis, PDEs, Mathematical Software.

1 Introduction

Let f(x) be a piecewise-smooth function on the interval [−L,L]. Then, the Fourier coeffi-
cients of f(x) are defined as follows:

an =
1

L

∫ L

−L
f(x) cos(

nπx

L
)dx

bn =
1

L

∫ L

−L
f(x) sin(

nπx

L
)dx



and the Fourier series of f(x) is given by:

f(x) ∼ 1

2
a0 +

∞∑
n=1

an cos(
nπx

L
) + bn sin(

nπx

L
)

Implementing routines for computing the Fourier coefficients in a CAS is not as straightfor-
ward as it might seem. Whenever the input function contains an expression involving sines
and cosines whose arguments are integer multiples of the fundamental frequency or a prod-
uct of polynomials with them, some of the coefficients must be computed separately as their
general expression will have singularities for some integer value(s).

1 Example. If f(x) = 3x2 cos(7x) + x on [−π, π], using the trigonometric identity:

cos θ cosϕ =
1

2
cos(θ − ϕ) + 1

2
cos(θ + ϕ) (1)

and integration by parts, a direct calculation shows that:

a0 = −12

49

an =


12(n2+49) (−1)n+1

(n−7)2 (n+7)2
n 6= 7

98π2+3
98 n = 7

bn =
2(−1)n+1

n

Another concern when dealing with trigonometric expressions is their multiple equivalences.
This is a well-known issue in different CAS: due to the underlying algorithms in their sym-
bolic integration routines, sometimes equivalent trigonometric expressions return different
answers when calculating the Fourier coefficients. For instance, using equation 1 in the case
θ = ϕ we get:

cos(θ)2 =
1

2
+

1

2
cos (2θ)

For illustration purposes, these are the results given by MathematicaTM when you compute
the Fourier cosine coefficients for each side of the equation.

In[1]:=FourierCosCoefficient[Cos[t]^2, t, n]
Out[1]:=0
In[2]:=FourierCosCoefficient[(1+Cos[2t])/2, t, n]
Out[2]:=1/2 (DiscreteDelta[-2 + n] + 2 DiscreteDelta[n])

The strategy followed in our implementation of the package is to transform any trigonometric
function into its canonical form internally so that it becomes easy to decide weather or not
the input contains an expression whose Fourier coefficients have singular values, using the
pattern matching capabilities of the Maxima CAS, as described in the following section.



2 Computing the Fourier coefficients and the Fourier series

Because of the linearity of the integral and the use of trigonometric canonical forms, it is
sufficient to detect the following patterns:

xr cos(
mπx

L
), xr sin(

mπx

L
), cos(

mπx

L
), sin(

mπx

L
), r,m ∈ N

To do so, we used the Maxima built-in commands defmatch and matchdeclare. Then,
two similar strategies were followed depending on the input expression being piecewise-
defined or not. The flow diagram appearing in Figure 1 shows the general idea behind both.
Of course, when the input expression is piecewise-defined, the procedure described in the
diagram must be followed in each interval of the domain.

Input: expression, variable, L

Transform trigonometric expressions to their
canonical form and perform a full expansion.

Convert the expanded expression into a list.
term1 + term2 + . . . + terms → [term1, . . . , terms]

Apply a heuristic routine to each element of the
list with pattern matching capabilities to compute

an(termk), bn(termk) and apply an auxiliary function to
compute separately the singular values, if any, of an, bn.

Sum over k both an(termk) and bn(termk)
to obtain the final answer for an and bn.

Return a list of the form:
[[a02 , an, bn], list of singular values ]

Where the list of singular values, if any, is written as follows:
[[j, aj , bj ], . . .]

Otherwise, an empty list [ ] is returned.

Figure 1: Routine for computing the Fourier coefficients.

The same ideas also apply for the case of the complex, sine and cosine coefficients, the only
difference is in the way the answer is given (see Table 1). The Fourier series are obtained
from an expansion routine of the Fourier coefficients. The upper limit of summation can be
a positive integer or infinite. In the first case, a truncated series is returned; in the second, a
symbolic series is displayed. We show some examples in the next section.



Type Command Answer format List of s.v format
Trigonometric fouriercoeff(expr, var, L) [[a02 , an, bn], list of s.v] [ ] / [[j, aj , bj ], . . .]
Complex cfouriercoeff(expr, var, L) [[c0, cn], list of s.v] [ ] / [[j, cj ], . . .]
Cosine fouriercoscoeff(expr, var, L) [[a02 , an], list of s.v] [ ] / [[j, aj ], . . .]
Sine fouriersincoeff(expr, var, L) [[bn], list of s.v] [ ] / [[j, bj ], . . .]

Table 1: Output formats for the Fourier coefficients (s.v= singular values).

2.1 Examples

Let f(x) be as in Example 1. Then we have the following:

(% i2) fouriercoeff(3*xˆ2*cos(7*x)+x,x,%pi);

[[− 6

49
,
12
(
n2 + 49

)
(−1)n+1

n4 − 98n2 + 2401
,
2(−1)n+1

n
], [[7,

98π2 + 3

98
,
2

7
]]] (% o2)

Indeed, notice that (n− 7)2(n+ 7)2 = n4 − 98n2 + 2401.

The case where MathematicaTM fails to compute correctly the cosine coefficients of equiva-
lent trigonometric expressions, it is correctly solved by our package.

(% i3) fouriercoscoeff(cos(x)ˆ2,x,%pi);

[[
1

2
, 0], [[2,

1

2
]]] (% o3)

(% i4) fouriercoscoeff((1+cos(2*x))/2,x,%pi);

[[
1

2
, 0], [[2,

1

2
]]] (% o4)

Here we have an example of a piecewise-defined function having singular values. We will
use the command cfouriercoeff to get the complex Fourier coefficients, so that we can
compare our answer to the one returned by MathematicaTM.

(% i5) f(x):=if x>= -%pi and x<0 then x elseif x>=0 and x<%pi then sin(3*x)$

(% i6) cfouriercoeff(f(x),x,%pi);

[[−3π2 − 4

12π
,

(
%iπn3 − 4n2 − 9%iπn+ 9

)
(−1)n − 2n2 − 9

2πn2 (n2 − 9)
], [[3,−15%iπ − 4

36π
]]]

(% o6)
However, Mathematica TM is not able to detect the singular value of the coefficient when
n = 3.

In[8]:=f[x]:= Piecewise[{{x,-Pi<x<0}, {Sin[3x],0<x<Pi}}]
In[9]:=FourierCoefficient[f[x], x, n]



{
1
3π −

π
4 n = 0

(−1)n(iπn3−2((−1)n+2)n2−9iπn−9(−1)n+9)
2πn2(n2−9) True

Now, let’s see an example of how Fourier series are displayed symbolically. If g(x) = x4 on
[−π, π] we get an answer like the ones appearing in Fourier Analysis textbooks.

(% i7) fourier_series(xˆ4,x,%pi,inf);

8

( ∞∑
n=1

(
π2 n2 − 6

)
(−1)n cos (nx)
n4

)
+
π4

5
(% o7)

Lastly, we show an example of how to use the expansion routines to obtain the Fourier se-
ries, truncated or not, and how they handle singular values in the Fourier coefficients when
displaying an infinite series.

(% i8) fcoeff:fouriersincoeff(x*cos(3*x),x,%pi);

[[
2n (−1)n

n2 − 9
], [[3,−1

6
]]] (fcoeff)

(% i9) fouriersincoeff_expand(fcoeff,x,%pi,5);

−5 sin (5x)

8
+

8 sin (4x)

7
− sin (3x)

6
− 4 sin (2x)

5
+

sin (x)

4
(% o9)

(% i10) fouriersincoeff_expand(fcoeff,x,%pi,inf);
The sum is over \N- {3}

2

( ∞∑
n=1

n (−1)n sin (nx)
n2 − 9

)
− sin (3x)

6
(% o10)

It is important to notice that displaying infinite series correctly has been a source of troubles
in different CAS. This is mainly due to the fact that they are not evaluated, only displayed
symbolically, and so, a very human simplification might not be performed by a CAS. For
illustration purposes, suppose that we want to compute the Fourier series of h(x) = sin 15x
on the interval [−π, π]. It is obvious that its Fourier series is exactly equal to h(x), because
its Fourier coefficients are a0 = 0, an = 0, bn = δ15n and we have:

h(x) ∼
∞∑
n=1

δ15n sin 15x = sin 15x

However, infinite sums of expressions containing Kronecker delta functions are really hard to
simplify to a single term, because it must be verified that the only index that does not vanish
is indeed contained in the set of indices over which you are considering the sum. Integration
routines in different CAS sometimes return a result for bn in terms of some sort of Kronecker



delta (Mathematica TM returns it in terms of DiscreteDelta), which complicates the task
of obtaining the Fourier series by an expansion of the coefficients.
Following our approach, we avoid the issue of the evaluation of Kronecker delta functions
inside an infinite sum:

(% i10) fourier_series(sin(15*x),x,%pi,inf);

sin (15x) (% o10)

However, as we just saw in the examples above, when the list of singular values is not empty,
we have to print a message indicating the set of indices that are taken into account in the
infinite sum.

3 Partial differential equations

In this work, we focused on solving the three main second-order linear partial differential
equations with constant coefficients, namely, the heat, Laplace’s and wave equations. The
mathematical details can be found in many standard textbooks on PDEs or Fourier Analysis.
Here, we will discuss some of the technicalities of the implementation and a list of examples.

Heat equation ut(x, t) = κuxx(x, t) +Q(x, t)
Laplace’s equation utt + uxx = 0
Wave equation utt(x, t) = c2uxx(x, t) + F (x, t)

Table 2: PDEs solved by pdefourier

In the previous section, it was mentioned that Fourier series are obtained by performing an
expansion of the Fourier coefficients. This approach is multipurpose. We’ve already seen that
it allows a user to expand a list of Fourier coefficients that have been computed previously,
but it is also useful to code the solution of the PDEs in an easier way. Although the package
can solve the heat equation with a heat source Q(x, t), we want to show how the expansion
routines facilitates the process of finding solutions with an easier version of the equation.
Consider the following IBVP:

ut = κuxx (x, t) ∈ [0, L]× R+

u(0, t) = 0 u(L, t) = 0

u(x, 0) = f(x)

Then, the solution is given by

u(x, t) =

∞∑
n=1

Bn exp[−n2(
πκ

L
)2t] sin

nπx

L

Bn =
2

L

∫ L

0

f(x) sin
nπx

L

Notice that for our purposes, it will be sufficient if we create a list of the form [[Cn(t)], [ ]/[j, Cj(t)]]
where Cn(t) = Bn exp[−n2(πκL )2t] and then use the expansion routine corresponding to a



Fourier sine series on the interval [0, L] and the space variable x. For instance, if we consider
f(x) = x2(1 − x), L = 1, κ = 1, a solution to the IBVP can be obtained in a few lines of
code:

(% i11) f(x):=if (0<=x and x<=1) then xˆ2*(1-x)$
(% i12) [[Bn],lsv]:fouriersincoeff(f(x),x,L)$
(% i13) Cn:Bn*exp(-nˆ2*%piˆ2*t)$
(% i14) fouriersincoeff_expand([[Cn],[]],x,L,inf);

−
4
∑∞
n=1

(2(−1)n+1)%e−π
2 n2t sin (πnx)

n3

π3
(% o14)

Here the list of singular values was empty (obviously), and no more work was required.
Similar methods to obtain solutions for the three equations with different types of bound-
ary conditions and domains were implemented, dealing with general expressions (piecewise
defined or not) and taking care of the possible singular values in the coefficients.

3.1 Examples

We will show one example for each equation, in all of them, MathematicaTM is not able to
find the solution. Although pdefourier is able to solve these equations with many more
boundary conditions, the ones appearing next are meant to give a general idea about how to
use the package to solve PDEs.

Heat equation: Consider the Dirichlet problem:
ut = κuxx +Q(x, t) (x, t) ∈ [0, L]× R+

u(0, t) = h1(t) u(L, t) = h2(t)

u(x, 0) = F (x)

The syntax for solving it using pdefourier is
dirichlet_heat(Q(x,t),F(x),h1(t),h2(t),x,t,%pi,%kappa,ord).
If h1(t) = A, h2(t) = B, A,B ∈ R and Q(x, t) = κ the solution is given by:

(% i15) declare(F,real)$
(% i16) declare(L,constant)$
(% i17) assume(L>0)$
(% i18) dirichlet_heat(%kappa,F(x),A,B,x,t,L,%kappa,inf);



Laplace’s equation: Here we consider the Laplace’s equation on a wedge and Neumann
conditions: 

urr +
1
rur +

1
r2uθθ = 0 (r, θ) ∈ [0, R]× [0, α], 0 < α < 2π

u(r, 0) = 0 u(r, α) = 0

ur(R, θ) = f(θ)

The syntax for solving it using pdefourier is
neumann_laplace_wedge(R,%alpha,f(theta),theta,ord). In this example
we will consider α = π/2 and R = 1.

(% i19) declare(f,real)$
(% i19) neumann_laplace_wedge(1,%pi/2,f(%theta),%theta,inf);

2
∑∞
n=1

sin (2θn)
∫ π

2
0 f(θ) sin (2θn)dθ r2n

n

π
(% o19)

Wave equation: For this example, we will consider the wave equation with homogeneous
boundary conditions and a driving term.

utt(x, t) = c2uxx(x, t) + F (x, t) (x, t) ∈ [0, L]× R+

u(0, t) = 0 u(L, t) = 0

u(x, 0) = f(x) ut(x, 0) = g(x)

The syntax for solving it using pdefourier is
fourier_wave(F(x,t),f(x),g(x),x,t,L,c,ord). If F (x, t) = cos(ωt)r(x)
and g(x) = 0, then:

(% i20) assume(t>0)$
(% i21) declare(f,real)$
(% i22) declare(r,real)$
(% i23) fourier_wave(r(x)*cos(%omega*t),f(x),0,x,t,L,c,inf);

Since no assumptions were made about ω, the solution corresponds to the case without reso-
nance (ω 6= cnπ

L ).

4 Conclusions

In this work we have discussed the main challenges of implementing a program that can
compute Fourier series correctly and the strategies followed to tackle them. We also showed



how such program became the basis to a larger set of functions that solve the three main
second-order partial differential equations with different types of boundary conditions and its
comparable performance to commercial software. The election of the free software Maxima
to develop it is highly important because the availability of the code can play a key role in
obtaining feedback from the mathematical community about the efficiency and correctness
of the algorithms, and its functionality can benefit from users’ contributions in the future to
extent the program capabilities and solve symbolically more partial differential equations, in
higher dimensions and in a wider variety of domains.

References
[1] JAMES S. WALKER, Fourier Analysis. Oxford University Press, New York, 1988.
[2] R. HABERMAN, Applied Partial Differential Equations. Pearson Education, Upper Sad-
dle River (NJ), 2013.
[3] MAXIMA.SOURCEFORGE.NET, Maxima, a Computer Algebra System, Version 5.42 (2019).
http://maxima.sourceforge.net/

View publication statsView publication stats

https://www.researchgate.net/publication/333207381

	Introduction
	Computing the Fourier coefficients and the Fourier series
	Examples

	Partial differential equations
	Examples

	Conclusions

